View Category

Find all Pythagorean triangles with length or height less than or equal to 20

Pythagorean triangles are right angle triangles whose sides comply with the following equation:

a * a + b * b = c * c

where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides. Find all such triangles where a, b and c are non-zero integers with a and b less than or equal to 20. Sort your results by the size of the hypotenuse. The expected answer is:

[3, 4, 5]
[6, 8, 10]
[5, 12, 13]
[9, 12, 15]
[8, 15, 17]
[12, 16, 20]
[15, 20, 25]
ruby
results=[]

1.upto(20) do |a|
1.upto(20) do |b|
c=Math.sqrt(a**2+b**2)
results<<[a, b, c.to_i] if c.to_i==c && !results.index([b, a, c.to_i])
end
end

results=results.sort_by{|r| r[2]}

puts results
def find_pythag( max=20 )
r = []
1.upto max do |n|
n.upto max do |m|
h = Math.sqrt( n**2 + m**2)
r << [n,m,h.to_i] if (h.round - h).zero?
end
end
r.sort_by { |a| a[2] }
end

Greatest Common Divisor

Find the largest positive integer that divides two given numbers without a remainder. For example, the GCD of 8 and 12 is 4.

ruby
135.gcd(30)
# => 15